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Preface 
In the last 35 years maglev has changed from an engineering curiosity to the basis for commercial systems 
now being built in the U.S., China and Japan. German and Japanese efforts over many years have 
demonstrated maglev’s potential for safe, fast and economically viable transportation but potential users 
have not been impressed enough to install a major commercial system until very recently. The lack of 
commercial support has been partly due to emphatic statements by critics from academia, industry and the 
government that maglev is too expensive in comparison with other types of guided transportation. These 
criticisms are not based on valid technical arguments but are akin to the criticisms of railroads that were 
made in the early 1800s when the “smart money” was being invested in canals. Unfortunately, maglev 
enthusiasts have not helped the cause by often focusing more on the technology than on what it can deliver 
to the user. 

A principal problem with past maglev efforts has been an excessive emphasis on speed and technology 
without taking a system approach to solving a transportation problem. With this in mind, MagneMotion has 
stressed the system approach and examined all aspects of the problem of providing high quality and cost 
effective transportation with maglev by taking advantage of recent advancements in enabling technologies. 
For U.S. applications MagneMotion believes a key market for maglev today is in the low and middle speed 
region now dominated by light rail, rapid transit, commuter rail and all versions of Automated People 
Movers (APM). The MagneMotion Maglev system, called M3, is currently focused on speeds up to 45 m/s 
(101 mph) but with minor modifications the system could compete with any guided system including ones 
with both lower and higher speed capability. 

A fundamental property of magnetic structures, called Earnshaw’s Theorem, is that no static 
configuration of magnets can be levitated so as to be stable in all degrees of freedom. It is possible to be 
stable in all but one dimension, so it is possible to have a magnetic suspension stable in the vertical 
direction but then it must be unstable in a lateral direction. Such structures have been proposed but they 
tend to be heavier and more complex than if electronic control is used to stabilize the suspension in the 
vertical direction. The vertical stabilization approach to ElectroMagnetic Suspension (EMS) design has 
now been proven to be suitable for operation over a wide range of speeds. For example, the new Shanghai 
Transrapid maglev installation uses this approach and will soon be carrying passengers at speeds up to 430 
km/h (267 mph), 43% faster than the fastest high-speed trains in operation today. 

Historically, the major disadvantage of EMS is the need to use magnetic gaps no larger than about 10 
mm. MagneMotion has overcome this disadvantage by using permanent magnets in conjunction with 
control coils to allow a magnetic gap of 20 mm. Although some ElectroDynamic Suspension (EDS) 
designs feature larger gaps, it is not clear there is a need for gaps greater than about 20 mm at speeds that 
are of interest for urban transportation. The Transrapid suspension has a gap of 10 mm and has been 
extensively tested at speeds up to 125 m/s (275 mph). If there is a cost advantage for using a larger gap, this 
has not been proven by any maglev system built to date. 

This report gives a description of M3 as it exists at this time. Although the design is expected to evolve 
over the next few years it is unlikely to change in any major way. This report can be used to assess the 
potential merits of M3 for specific applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2003 MagneMotion, Inc. 
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Abstract 
The MagneMotion Urban Maglev System, called M3, is designed as an alternative to all conventional 
guided transportation systems. Advantages include major reductions in travel time, operating cost, capital 
cost, noise, and energy consumption. Van or small-bus size vehicles operating automatically with 
headways of only a few seconds can be operated in platoons to achieve capacities of more than 12,000 
passengers per hour per direction. Small vehicles lead to lighter guideways, shorter wait time for 
passengers, lower power requirements for wayside inverters, more effective regenerative braking and 
reduced station size. The result of the design is a system that can be built for about $20M per mile, 
including vehicles but excluding land acquisition. 

The design objectives were achieved by taking advantage of existing technology including improved 
microprocessor-based power electronics, high-energy permanent magnets, precise position sensing, 
lightweight vehicles, a guideway matched to the vehicles and the ability to use sophisticated computer-
aided design tools for analysis, simulation and optimization. The vehicles have arrays of permanent 
magnets to provide suspension and guidance forces as well as provide the field for the Linear Synchronous 
Motor (LSM) propulsion system. Feedback-controlled currents in control coils wound around the magnets 
stabilize the suspension. The LSM windings are integrated with the suspension rails and excited by 
inverters located along the guideway 

This report focuses on urban applications with baseline vehicles designed to carry 24 passengers seated 
with room for 12 standees at times of peak load. The LSM is designed to provide speeds up to 45 m/s (101 
mph) and acceleration and braking up to 2 m/s2 (4.5 mph/s) without onboard propulsion equipment. 
Installation and operating cost are predicted to be lower than for any competing system and average travel 
times are reduced by more than a factor of 2. Environmental advantages include a factor of 2 reduction in 
energy consumption, smaller guideway cross-section with reduced visual impact, and greatly reduced 
noise. 

For some applications it is desirable to use smaller vehicles with lower top speeds or larger vehicles 
with higher top speeds. Both of these options are possible with the same guideway and suspension system. 
The only changes necessary are in the size of the power system used for propulsion. A 12 passenger vehicle 
with a top speed of 30 m/s (67 mph) is discussed in this report as an option when the application requires 
shorter trips with lower capacity and the reduced cost is an important advantage. An articulated vehicle 
with 36 seats is a possible option for speeds up to at least 60 m/s (134 mph). The important fact is that, with 
proper attention to design, it will be possible to upgrade M3 systems to larger vehicles and higher speeds 
and capacities if such demands are important in the future. The evolution of railroads has shown the 
desirability of the ability to change with time. 
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1 Overview 
This report summarizes the key features of the M3 design. Other reports provide more detailed analysis, 
simulation and design. This first section gives a broad overview and is followed by sections describing the 
key subsystems in more detail. 

M3 was designed with the following objectives for improving on conventional transit systems and 
strategies for realizing the objectives. 
?? Decrease travel time by at least a factor of 2: 

o Allow speeds up to 45 m/s (101 mph), acceleration and braking up to 2 m/s2, short average waiting 
time and reduced dwell time. 

?? Decrease operating cost by at least a factor of 2: 
o Use less energy and reduce labor and life cycle costs. 

?? Reduce guideway cost by at least a factor of 2: 
o Reduce guideway weight by reducing vehicle weight and matching the guideway to the vehicle. 

?? Reduce environmental impact: 
o Reduce noise, guideway size and energy consumption. 

?? Create an improved ElectroMagnetic Suspension (EMS): 
o Use permanent magnets with a 20 mm magnetic gap (15 mm physical gap) and make each magnet 

contribute to lift, guidance and Linear Synchronous Motor (LSM) propulsion. 
?? Provide excellent ride quality: 

o Pay careful attention to guideway design and take advantage of the distributed and non-contacting 
nature of maglev forces. 

?? Create a very safe transportation system: 
o Use a dedicated guideway, vehicles that cannot derail, linear motor propulsion that does not 

depend on friction and totally automated operation. 

A key feature that drives the M3 System Concept is the use of small and light vehicles operating with 
short headway. The light weight contributes to reduced guideway cost and the small size, in conjunction 
with short headway, reduces wait time and allows station-skipping operation. Figure 1.1 shows a 3D view 
of the baseline vehicle and some of its features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.1. Preliminary vehicle and guideway design. 
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Following are the key performance specifications that were the basis of the design: 
?? Speeds up to 45 m/s (162 km/h, 101 mph) 
?? Acceleration and braking up to 2 m/s2 (4.4 mph/s) 
?? Headways as short as 4 seconds when operated in platoons 
?? Capacity up to 12,000 passengers per hour per direction (pphpd) 
?? Horizontal turn radii of 18.3 m (60’) and vertical radius of 300 m (984’) 
?? Target cost of $20 million per mile including vehicles 
?? Minimum environmental impact with reduced noise and energy consumption 

Figure 1.2 shows a cross-section of the guideway beam and the vehicle. The permanent magnets on the 
vehicle provide lift, guidance and act as the field for Linear Synchronous Motor (LSM) propulsion. Control 
coils wound around the magnets stabilize the suspension and adjust the nominal magnetic gap to the value 
that minimizes power requirements for the control. Windings in the guideway are excited by inverters 
located along the guideway and provide controllable thrust for acceleration, cruise and braking. The 
secondary suspension on the vehicle provides improved ride quality but can be omitted for lower speed 
operation. 
 

 
Fig. 1.2. Cross-section of guideway beam and preliminary vehicle suspension. 
This is only a preliminary design and will be refined in the next phase of development. 

The design of the M3 system has focused on the components that contribute most to performance and 
cost with a particular focus on subsystems that have unique features: permanent magnet EMS suspension, 
LSM design and manufacture, guideway beams, vehicle suspension and control systems. In order to create 
confidence in the basic design a demonstration prototype has been constructed and tests to date are very 
encouraging. Future plans call for extending the test track and ultimately building a high-speed test loop as 
a prelude to installing a commercial system. 
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2 Electromagnetic suspension and guidance 
A key design objective was to create a suspension that: is suitable for low to moderate speeds with frequent 
station stops, allows vehicles to make small radius turns in both the horizontal and vertical directions, and 
is suitable for use with small vehicles. Members of the MagneMotion maglev team have had considerable 
experience with both ElectroMagnetic Suspension (EMS) and ElectroDynamic Suspension (EDS). A 
careful review of the merits of each led us to pick the EMS design for the following reasons: 
?? No need for an auxiliary suspension at low speeds; 
?? No need to provide high propulsive force at low speeds to overcome magnetic drag; 
?? No need to shield the passengers from unacceptably high magnetic fields; 
?? Reduced cost for a complete system. 

Following is a discussion of the M3 features that contribute to decreasing cost and increasing 
performance. 

2.1 Permanent magnet EMS 
A key feature of the M3 suspension is that every permanent magnet on the vehicle contributes to 

suspension, guidance and propulsion. This is analogous to the way every railroad wheel provides 
suspension and guidance and can play a key role in propulsion and braking. Without this 3-way 
combination there is added cost and complexity. For example, Transrapid uses one set of electromagnets to 
provide both lift and a field for an LSM but requires separate steel rails on the guideway and a separate set 
of feedback controlled electromagnets on the vehicle to provide guidance. The Japanese low speed HSST 
and Korean Maglev designs provide lift and guidance with a single electromagnetic structure but require a 
separate aluminum reaction rail on the guideway and Linear Induction Motor (LIM) primary on the vehicle 
to provide propulsion. For M3 the integration of these three functions allows the vehicle magnet arrays to 
be mounted on pods that can rotate like wheel bogeys to allow sharp turns in both the horizontal and 
vertical directions. 

Figure 2.1 shows a pod with permanent magnets attracted upward to a laminated steel suspension rail. 
Control coils around the magnets are used for stabilization and windings integrated into the suspension rails 
provide propulsion. Half-length magnets at the ends of the pod equalize magnetic flux and mitigate 
cogging. This drawing shows propulsion windings wound on teeth on a guideway rail and suspension 
control coils wound around permanent magnets on a vehicle pod. 

Fig. 2.1. A vehicle’s magnet pod attracted upwards to a suspension rail. 

Coils wound around the magnets are excited from a controller that uses gap and acceleration sensors to 
control current in these coils to stabilize the magnetic gap at that value which provides a match between 
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vehicle weight and permanent magnet force. Ideally it would take negligible power to stabilize the 
suspension and in practice the power requirement is dramatically less than it would be if the entire 
suspension force were provided by electromagnets alone. When the vehicle is stationary the required 
control power will be only a few watts and at operational speeds it is expected to be on the order of 100 W 
per tonne of vehicle mass. For comparison, Transrapid uses electromagnets for suspension and they require 
1,000 W per tonne of vehicle mass for a suspension with a magnetic gap of only 10 mm, and require 
additional power for guidance. 

The use of permanent magnets allows the use of a magnetic gap of 20 mm with a corresponding 
reduction in guideway tolerance requirements. The vehicle mass is estimated to be 7±1.5 tonnes according 
to the number of passengers onboard. The suspension controller will adjust the magnetic gap to minimize 
control power and thus the gap will vary ±3 mm; a higher load will lead to a smaller gap and vice versa. 

2.2 Lateral guidance and damping 
The suspension system must also provide lateral forces to guide the vehicle and resist lateral forces due to 
turns and wind. An important feature of M3 is the way the magnets that provide suspension forces also 
provide guidance forces. If the vehicle is displaced laterally there will be strong restoring forces created by 
the tendency of the magnets to align themselves with the steel suspension rails on the guideway. By using a 
magnetic gap that is ¼ the width of the suspension rails it is possible to provide passive guidance with a 
lateral guidance force up to 33 % of the vertical lift force. Figure 2.2 shows the results of a 3D Finite 
Element Analysis (FEA) of a 3.25 meter long pod (12 full size magnets and 2 half-magnets at the ends) 
designed to support ¼ of a baseline vehicle. The plot shows the magnetic gap and lateral guidance force Fz 
as a function of lateral displacement zd for a nominal load. With a 20 mm gap there is 16.7 kN of lift force 
when there is no lateral displacement. With a lateral displacement of 40 mm the magnetic gap would drop 
to 14.7 mm (to maintain the vertical force) and there would be a lateral restoring force of 0.33 g = 5.5 kN. 
Vertical and lateral skid-pads will be provided to deal with extreme forces, such as might happen during an 
earthquake. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.2. Vertical gap and lateral force vs. lateral displacement. 

Although the suspension is passively stable for lateral motion, there is very lit tle damping so other 
means must be provided to prevent excessive lateral motion. The Japanese HSST and Korean maglev 
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designs have both addressed this problem by using passive damping in a secondary suspension on the 
vehicle. The M3 design can use this approach if needed, but an alternative is to use feedback control to 
achieve the same objective. Further development will determine the most effective way to provide lateral 
damping. 

2.3 Horizontal and vertical turns 
Creating a maglev system that can negotiate tight turns has been a challenge to all maglev designers. In a 
cost-effective design the magnetic force must be distributed over a large area but for making tight turns the 
suspension magnets must be articulated so that they follow the turn. The M3 mechanism for doing this is 
shown in Fig 2.3-5. This preliminary design is for a 24-passenger vehicle that can negotiate horizontal turn 
radii of 18.3 m (60’) and vertical turn radii of 300 m (984’). Improved designs are being studied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.3. Suspension mechanism showing pod pivoting for turns. 
 

 
Fig. 2.4. Top view of suspension system. 
 
 
 
 
 
 

TURN 
ARTICULATION

CREST/SAG 
ARTICULATION



  

 

10 

 

 
Fig. 2.5. Critical dimensions for pod pivoting for horizontal  turns. 

3 Linear Motor Propulsion 
Maglev developers have universally adopted the linear electric motor as the propulsion system of choice for 
maglev. There are two types of linear motor that are currently being used for commercial designs: Linear 
Induction Motor (LIM) and Linear Synchronous Motor (LSM). 

The only practical version of the LIM is one that has an onboard motor primary. This design has some 
advantages. 
?? A power inverter is required for each vehicle motor, but the total cost of inverters for a complete 

system is reduced. 
?? The guideway portion of the LIM consists of an aluminum sheet, sometimes on steel backing, and this 

is less expensive than an LSM stator. 

But the LIM has major disadvantages. 
?? The vehicle weight is increased by at least 20% because of the onboard propulsion equipment. 
?? It is very costly in weight and efficiency to operate with a magnetic gap more than about 10 mm and 

thus guideway tolerances are more critical. 
?? It is necessary to use sliding contacts to transfer all of the propulsion power to the vehicle or, at much 

greater cost, to use inductive power transfer. 
?? The motor efficiency is reduced, both because the motor is less efficient and because the vehicle is 

heavier and requires more propulsive thrust. 

The only practical version of an LSM is one that has the propulsion winding on the guideway, the so-
called “long stator” design. This has a number of important advantages. 
?? The motor can use the same magnets as the suspension and thereby reduce vehicle cost and weight and 

increase efficiency. 
?? The magnetic gap can be larger. 
?? The vehicles are lighter so less propulsive power is  required. 
?? No need to transmit propulsive power to vehicle. 
?? The propulsion and control equipment is all on the guideway so communication is more robust, control 

is simplified and regenerative braking is easier to achieve. 

The disadvantages of an LSM include: 
?? Higher cost for guideway-mounted LSM motor windings and wayside power inverters. 
?? Precise position sensing is required. 

Virtually all high-speed maglev designs use an LSM for propulsion. Early versions of Transrapid used 
the LIM but starting with TR05 in 1975 they switched to the LSM. The Japanese high-speed maglev 
developers have always used an LSM. The Japanese HSST and Korean designs use a LIM but they have 
limited speed capability. A superficial analysis of cost might suggest that LIM propulsion is less expensive 
but when all of the costs associated with the negative aspects are considered it is likely to be more 
expensive for a complete system. The dramatic reduction in the onboard power requirements is also a 
strong incentive for using an LSM. For M3 with a need for light vehicles and a 20 mm gap the LIM is not a 
viable alternative. Details of the M3 LSM design are discussed in this section. 
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3.1 The tradeoff between cost and performance 
An LSM can be designed to give almost any desired performance, but increased performance implies 
increased cost. The design problem is to find that level of performance that is most cost effective. For 
example, we could use a smaller LSM that produces less thrust and is less expensive, but then vehicle 
acceleration is reduced so travel time is increased and we lose many of the advantages of a higher top 
speed. 

For standing passengers it has been generally accepted that an acceleration of 1.6 m/s2 is an upper limit 
for safe operation. Since an urban vehicle stops frequently and often has standees it was decided to limit 
acceleration to this value. In order to be able to accelerate a fully loaded vehicle at 1.6 m/s2 it is necessary 
to have more thrust than is necessary for the same acceleration for a nominal load. Thus the M3 design calls 
for an acceleration capability of 2 m/s2with a nominal load. This also allows a nominally loaded vehicle to 
maintain an acceleration of 1.6 m/s2 up to a higher speed. 

In many examples that have been considered there are sizable regions where it  is not necessary to 
provide rapid acceleration or deceleration and in these regions it is possible to reduce the propulsive power 
with a resulting saving in cost. The reduced propulsive power also implies reduced braking capability from 
the LSM, but this can be made up by other means, as will be discussed later. 

3.2 Block length 
An LSM winding on the guideway is divided into sections called blocks and each block is excited by a 
wayside inverter to provide thrust. An important constraint is that only one vehicle can be in one block at 
one time. At low speeds and high acceleration we would like to have low winding resistance in order to 
have high efficiency with minimum inverter rating, but at high speeds and moderate acceleration the power 
loss in winding resistance is relatively low but the winding inductance plays a major role in limiting 
performance and leads to a higher VA rating on the inverters. In order to achieve acceptable values of 
winding resistance and inductance it is necessary to limit the length of propulsion winding that is excited at 
any time. For M3 a good choice of block length is in the range 20 to 60 meters. In order to simplify 
installation it is convenient to match the block length to the guideway pier spacing. In a later section it will 
be shown that a good pier-to-pier spacing is 36 meters, so this has been chosen as the nominal block length. 
Near stations an 18-meter block length will be used and in regions where constant speed is the norm the 
block length may be as long as 72 meters. The combination of block length and inverter size should be 
carefully chosen so as to provide desired performance at the lowest cost. 

3.3 Power distribution and control 
Figure 3.1 shows a typical power distribution design. The electric utility provides 3-phase power to a 
rectifier station that then delivers DC power to a bus connecting the wayside inverters. Typically each 
rectifier station will provide 1.5 MW nominal power but with a potential for almost twice this value for 
short periods of time. The spacing between Rectifier Stations is determined by vehicle density and 
acceleration profiles but will typically be in the range 5 to 10 km (3.2 to 6.4 miles). For the baseline design 
a spacing of 8 km (4.97 miles) is used, 

 
Fig. 3.1. Power distribution system. 

The inverters not only provide power for accelerating vehicles, they are also used to decelerate the 
vehicles and deliver the vehicle kinetic energy back to the DC bus so it can be used elsewhere in the 
system. The use of regeneration can reduce total energy consumption by up to 40 % for a typical urban 
application, as will be seen in the next section. 
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Since only one vehicle can be present in a block at a time, inverter spacing must be short enough to 
deal with the minimum expected headway. For 4-second headway at 45 m/s we could, in principle, use one 
inverter to power a block that is almost 180 meters long. We would then use electronic switching to ensure 
that not more than 36 meters is excited at any one time. The choice between an inverter for every block and 
inverters that are switched to more than one block will be made on the basis of cost and vehicle headway 
requirements. 

The baseline design uses two DC buses: +750 VDC and –750 VDC. The port and starboard motors are 
powered from separate buses so as to achieve redundancy against possible failures and to allow the 
majority of the power to be distributed at the 1,500 VDC level in order to allow longer distribution 
distances than are commonly used for rapid transit or light-rail. Relatively inexpensive IGBT power 
devices are now available for operation with a 750 VDC bus but the final choice of voltage will be based 
on minimizing the cost of inverters and power distribution components. The DC bus is designed to carry 
750 kW up to 4 km (2.49 miles) in each direction with a typical efficiency of 97% at full load. The rectifier 
station will be designed to provide 50% over-capacity for several minutes in order to deal with fluctuations 
in power demand. 

3.4 Performance simulation 
Fig. 3.2 shows distance, velocity and power plots for a trip of 3.2 km (2 miles). It is assumed that the 
vehicle accelerates at a rate that is the minimum of 1.6 m/s2 and a rate limited by the maximum available 
thrust from the motor for a nominal vehicle mass of 7 tonnes. For deceleration the LSM is able to sustain a 
uniform 1.6 m/ s2 for almost the entire stopping time. It is assumed that there are no grades that prevent the 
acceleration or speed from being sustained. The model used for the plots in Fig. 3.2.includes the effects of 
aerodynamic drag, winding resistance and power system inefficiency. 

For the 3.2 km trip in Fig. 3.2 if the dwell time is 20 seconds the average speed is 27 m/s (60 mph). In 
order to estimate travel times for other trip lengths assume the speed is 45 m/s for the entire trip but with a 
time penalty of 30 seconds for every stop plus a dwell time, estimated to be 20 seconds, for every stop. If 
the trip length is less than 1.6 km (1 mile) then the vehicle never reaches maximum speed so extra time is 
required. 

Power consumption is: 412 kW peak; 113 kW cruise; 65 kW average with full use of regenerated 
power; and 112 kW if braking energy is dumped in resistors without reuse. For this example regeneration 
provides a 42% saving in propulsion power cost. The savings would be less for a longer trip and more for a 
shorter trip. 

In some cases more energy is being regenerated than can be used in a useful way and in this case the 
power must be dumped into resistors. It is possible to add a power dumping facility to each rectifier station, 
but this is unnecessary. There are at least 20 inverters not being used for every inverter that is being and 
these unused inverters can be used to dissipate power in the propulsion windings where there is no vehicle. 
This method of braking is particularly useful when, due to an emergency, it is desirable to stop every 
vehicle in the system in the shortest possible time. Preliminary calculations show that this can be done 
without the need for separate braking resistors. 

All electrically propelled transit systems create problems for the electric utilities because of the large 
and rapid fluctuation in power consumption. One advantage of using small, closely spaced vehicles is that 
starting times can be controlled to minimize the peak excursions. Simulations show that with only minor 
control of when a vehicle leaves a station it is possible to make full use of regenerated energy and reduce 
the peak power excursions by a large factor. More detailed simulations are planned when the system design 
is complete. 

A problem that all transit systems must address is the need to deal with electric power failures in a safe 
and effective way. Probably the least expensive way is to install a modest size standby power generator in 
every rectifier station. A 50 kW DC generator is adequate to move all vehicles, one by one, to a station 
where people can be unloaded. Such a generator would add very little to the system cost but provide an 
important safeguard. 
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Fig. 3.2. Distance, speed and power profiles for a 3.2 km (2 mi) trip. 

3.5 Efficiency and energy consumption 
For a transit system energy cost are quite significant. For M3 it is estimated that for typical usage the motor 
efficiency will average about 90%. This includes all loss in the stator, inverter and power distribution 
system. But in evaluating efficiency there are several points to keep in mind: 
?? The efficiency of the motor is very dependent on speed and thrust. 
?? The ability to use regenerated energy can reduce energy costs by a large factor. 
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?? For urban applications a large fraction of the energy consumed is related to acceleration and 
deceleration, not cruise at constant speed. This means that the use of a light vehicle and station-
skipping control strategies can greatly reduce energy usage. 

One of the best measures of efficiency is the energy usage per passenger-mile of travel. From the plots 
of Fig. 3.1 we see that the energy usage is 65 kW for an average speed of 60 mph or 3.9 MJ/mile. 
Assuming a nominal load of 18 passengers this  implies a consumption of 217 kJ/pas-mi = 60 W-hr/pas-mi. 
In order to account for energy for HVAC power usage and other factors, assume the actual consumption is 
100 Wh/mi. Assuming electric power cost of $0.12 per kWh, the energy cost is $0.012 per passenger mile. 
For continuous cruising at maximum speed the energy consumption is 62 W-hr/pas-mi, almost the same as 
with the stop. 

In order to compare M3 energy consumption with that of other transit systems we need to convert the 
energy to BTU/pas-mile. The theoretical conversion is 1055 J/BTU or 3.412 BTU/W-hr. For comparison 
with other modes we need to account for the 29% average efficiency of electricity generation and 
distribution (see Table B.3 in the reference given following Table 4.1) so the appropriate conversion factor 
is 11.8 BTU/W-hr. This example shows and energy intensity of 1180 BTU/pas-mile and Table 3.1 shows 
how this compares with energy consumption for various rail and bus modes. 
 
Table 3.1. Comparison of energy usage of various transportation modes. 

 Energy usage, 
1012 BTU 

Average trip 
length, miles 

Energy Intensity, 
BTU/pas-mi 

M3   1180 
Amtrak 16.2 243 2902 
Commuter rail 25.9 22.1 2759 
Rail Transit 47.2 5.1 3105 
Intercity bus 33.4  964 
Transit bus 101.4  4775 
Dom. & Int. Air 2743.1 842 3952 
Autos & lt.  trucks 15680.0   9.1 5669 
Data is taken from Tables 2.5-6,2.12-13, 8.12-13 and 12.11-13 in Transportation Energy Data Book , 
Edition 22, Sept. 2002, Oak Ridge National Laboratory (available at www-cta.ornl.gov/data). Data is for 
2000 except intercity bus mode data is for 1999. 

Care must be taken in interpreting Table 3.1 because of wide variations within any mode. For example, 
the energy intensity for light rail varies from less than 2,000 BTU/pas-mi for Newark to more than 8,000 
BTU/pas-mi for Cleveland. But the conclusion is that maglev has the potential to reduce energy 
consumption below almost all other modes and, if people will use maglev instead of a car or airplane the 
savings are huge. If an M3 system were operated with the same maximum speed and stopping frequency as 
intercity bus, M3 would have essentially the same energy intensity. In summary, maglev can offer 
significant energy savings, particularly in comparison with the modes most used in the U.S. today. 

4 Guideway 
The focus of the M3 design effort was to keep the guideway beams as small and light as possible without 
jeopardizing ride quality. The resulting design is based on deflection considerations, and the strength of the 
structures is far greater than is necessary so there is no compromise with safety. The relatively small size of 
the guideway is evident in the artist’s rendition on the cover of this report. Note that the pier spacing is 
relatively large and the beam cross-section relatively small when compared with virtually all other elevated 
transit systems. For new installation it is believed that most urban maglev systems will use elevated 
guideways to avoid the right-of-way access and safety problems of at-grade guideways or the cost of 
tunnels. Maglev vehicles make no wheel or engine noise and very little wind noise at speeds suitable for 
urban transportation. Many of the objections to elevated guideways are ameliorated by the M3 design. 

In some cases Urban Maglev will operate at-grade or in tunnels and in these cases the beams can have 
a smaller height with more frequent supports, but the design principles are the same. For example, a 
reduced height beam could be mounted directly on concrete ties to replace rails in a rapid transit retrofit. 
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Guideway cost is a dominant item so considerable effort has been made to reduce cost by reducing size 
and weight. The following sections discuss some of the key details of the guideway design. 

4.1 Beam design 
With EMS designs the vehicles must either be supported by an overhead rail or use a monorail type of 
construction with the vehicle wrapped around the beam and magnets moving under the suspension rails. 
The overhead design could be useful for indoor use, but is not considered desirable for outdoor use because 
of the high cost of a support structure and poor ride quality in the presence of high winds. 

The MagneMotion guideway consists of beams mounted on piers spaced 36 meters apart. This spacing 
was arrived at by an iterative process that considered the tradeoff in cost between using more piers and a 
lighter beam vs. fewer piers and a heavier beam. An additional consideration is a preference to use longer 
pier spacing because then there is less visual impact. For comparison the new Shanghai Transrapid 
installation uses a pier spacing of 24 meters but the beams are much heavier so a longer span would be very 
expensive. The New Millenium extension of the Vancouver Skytrain uses a 37 meter spacing. 

It would be possible to make the beam length equal to the pier spacing, but there are major advantages 
of using a double-span beam. In this case a double-length beam is supported in the middle with a rigid 
mount and at the ends with a sliding mount. When the temperature changes the beam will change length 
and slide on the end mounts and enough space is allowed so that adjacent beams never touch. The 
distributed nature of the suspension magnets allows gaps of 20 mm to be easily bridged. As compared with 
a single-span beam with the same pier spacing, the double-span beam offers a 30% reduction in static 
deflection as well as a reduction in dynamic deflection, even though the lowest resonant frequency is the 
same. In some cases it may be necessary to use single-span beams and then a somewhat large section will 
be used to maintain adequate stiffness. 

Three alternate sections have been studied for the guideway beams: a steel box girder, a concrete box 
girder, and a hybrid design that uses a concrete box girder with a composite steel top plate. The sections for 
concrete and steel are shown in Figure 4.1. The hybrid design is similar to the concrete design except that 
steel crossties used to support the suspension rail are replaced by a solid steel top plate that is bonded to the 
concrete beam. With the hybrid design the steel that supports the rails also contributes to reducing 
guideway deflection and increasing the resonant frequencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Concrete       (b) Steel 
Fig. 4.1. Alternate beam section with dimensions in meters. 

For all of the alternates a two-span continuous girder configuration is chosen. Horizontal restraint is 
provided at the interior pier with fixed bearings in the case of the steel alternate, and with a monolithic 
connection in the case of the concrete alternate. The monolithic connection will use the additional stiffness 
of the pier to increase the overall stiffness somewhat, and is an economical means of making the 
connection. 

These sections were incorporated into single and double guideway designs. The geometry of the design 
is dictated by dimensional constraints on the beam, and its connection at the column, which are imposed by 
the attractive maglev system. A relatively narrow girder is required because of the necessity of the 
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magnetic pods to wrap around and under the edge of the girder with the motor laminations attached to the 
underside of a plate protruding from the top of the girder. In addition, ride-quality considerations and 
deflection tolerances suggest a relatively deep girder. Together these two requirements result in a fairly 
deep narrow girder for which stability must be provided by external diaphragms. Since 4 meters (i.e. from 
beam center to beam center) will separate the two double-track guideway beams, intermediate diaphragms 
between the girders are not desirable (though they may be necessary in seismic zones). Stability is therefore 
provided by “outrigger” diaphragms at the bearings, or by a monolithic connection to the column. 
Diaphragms must be kept out of a zone of roughly half a meter below the top of the girders in order to 
allow the magnetic pods to pass. 

4.2 Beam statics and dynamics 
Guideway beams are designed on the basis of stiffness, not strength. Almost any design that gives 

good ride quality will be capable of carrying much higher loads then the maglev vehicles will create. The 
extra strength means, for example, that heavy maintenance or rescue vehicles could safely operate on the 
guideway if they operated at reduced speed. Since the key issue is ride quality, the important parameters are 
the guideway deflection under static and dynamic loads and due to thermal deflection and creep. Since 
beam cost is very nearly proportional to weight, the problem is to design a beam that is as light as possible 
but provides good ride quality. 

For this discussion static deflection is defined as the deflection of the center of the beam when a 
vehicles move across it at a low speed. Dynamic deflection is defined to be the extra deflection that occurs 
because of resonances in the beam. Although the beam has an infinite number of resonant frequencies, only 
the first one or two contribute significantly to vehicle ride quality. The peak dynamic deflection can never 
exceed the peak static deflection but it can have a major effect on ride quality. We can use precamber of the 
beam to compensate for nominal vehicle mass but can not use it too compensate for dynamic deflection. 
 
Table 4.1 Properties of the three beams shown in Fig. 4.1. 
 Concrete Hybrid Steel 
Density (kg/m3) 2,400  7,860 
Elasticity (E, Gpa) 30  207 
Top thickness (mm) 145  15 15 
Side wall thickness (mm) 145 145 13 
Bottom wall thickness (mm) 145 45 19 
Mass (kg/m) 1,767 1,804 751 
EI (N-m2) 5280 7140 5480 
Area (m2) 0.6149 0.6345 0.0765 
I (m4) 0.1755 0.2421 0.0293 
Static deflection (mm) 8.84 6.3 8.51 
Thermal gradient deflection (mm) 3 7 9 
Creep deflection (mm) 2 2 0 
f1 (anti-symmetrical, Hz) 2.09 2.43 3.44 
f2 (symmetrical, Hz) 3.27 3.80 5.38 
All beams have the following properties: double-span 72 m (236’) long; 1.6 m (58”) high; suspension rails 
have a 1.5 m (59”) spacing between rail centers. For a single span beam the static deflection is 30 % higher.  

4.3 Comparison of steel and concrete beams 

4.3.1 Live Load Deflections 
Deflection and ride-quality considerations, rather than strength, governed the design of both the steel and 
concrete alternates. Both are operating well below their safe load-carrying capacity. The quantity EI 
(elasticity times moment of inertia) for the steel alternate is 5500 MN·m2, while that for the concrete 
alternate is very similar at 5300 MN·m2. The live load deflections for the two are 10 mm and 9 mm 
respectively. The live load deflection of the concrete alternate is slightly lower, even though it has smaller 
section stiffness, because of the monolithic connection at the interior pier. Preliminary estimates for the 
dynamic amplification of the vehicle loading were about 20%. A value of 20% has been used in these 
deflection calculations, and that value will be updated as the design of the system progresses. Structural 
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damping for either alternate will be very small, on the order of 1 or 2%, and will do little to reduce the 
immediate dynamic effects of vehicle loading, though it will have an important effect on the time the 
guideway continues to vibrate after the vehicle has passed. 

The hybrid section is envisaged as the concrete section with a steel plate attached at the top with 
sufficient shear-flow capacity to make the plate act compositely with the concrete. The plate would be 
made thick enough to support the vertical load from the vehicle and windings in transverse bending to 
transfer it to the girder. It would not be considered for the strength design for longitudinal bending. The 
increase in stiffness would only be considered for the reduction in deflection that it would provide. The 
section stiffness EI for the hybrid section is about 7140 MN·m2, which would reduce the live load 
deflection to about 7mm. 

The live load performance of the steel and concrete alternates is very similar. The steel alternate 
exhibits a lower dynamic response because it has a lower mass for the same stiffness, which results in a 
fundamental period that is significantly shorter than the transit time of the vehicle. The monolithic 
connection that is possible for the concrete alternate helps to increase it’s stiffness and compensate for the 
fact that it’s fundamental period is closer to the transit time and therefore increases its dynamic response. 
That is, even though its dynamic deflection is greater, its static deflection is less, such that the total 
deflection is about the same. It is important to note that it is the vertical acceleration of the vehicle that is 
important, and not the dynamic deflection of the guideway. The total live load deflection, static plus 
dynamic, is a good proxy for vehicle acceleration, since the vehicle has to travel vertically from zero to the 
full deflection and back in the time it takes to cross the span. Since the total live load deflections are very 
similar, the ride quality will be similar as well. The hybrid alternate will have the best live load 
performance because it has the smallest total live load deflection.  

The live load deflections in curved spans will be greater than those in tangent spans because of the 
additional component from twisting. Moreover, the twist itself will be undesirable if it becomes too great. 
Deflections were computed for a 20 m span on an 18.3 m radius to determine the possible extent of this 
problem. A vertical deflection of about 6 mm was found, which is less than that for the typical tangent 
span, owing to the reduced span length. The maximum twist results in a difference in elevation between the 
inner and outer suspension rail of about 8mm, which is within acceptable limits. For comparison, the 
difference in elevation from a 6? superelevation will be 157 mm. 

4.3.2 Thermal Deflections 
The deflection under live load is not the only consideration for ride quality. Thermal gradients will also 
contribute to the total deflection. At this stage only vertical thermal gradients have been studied. The 
effects of horizontal thermal gradients will be considered at a later stage of the study. The thermal gradient 
for the steel cross section was taken from the Federal Railroad Administration Report No. DOT/FRA/ORD-
94/10, Safety of High Speed Magnetic Levitation Transportation Systems. The thermal gradient for the 
concrete alternate was taken from the American Association of State Highway and Transportation Officials 
(AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications, 2002. 

Analyses of the sections for thermal gradients show that the steel alternate exhibits significantly higher 
deflections under this effect, with an upward deflection of about 9 mm. The upward thermal gradient 
deflection for the concrete alternate is about 3 mm. The peak temperature for the thermal gradient for the 
steel structure is higher than that for the concrete, as would be expected. However it is only slightly higher, 
and the differences in temperature alone cannot explain the large difference in the thermal gradient 
deflection. The principal cause of the difference is the difference in section geometry. Since the 
temperature gradient is very steep at the top slab, the thickness of the top slab of the concrete alternate 
results in an average temperature in the slab much less than the peak temperature at the extreme fiber. In 
contrast, the entire thickness of the top plate of the steel alternate is effectively at the peak temperature, and 
therefore tends to cause a much greater curvature in the steel section. 

Reflective coatings and/or insulation may be used to reduce the temperature peaks at the surface of the 
section to reduce deflections. Such treatment would be effective for both concrete and steel alternates, but 
would obviously be more worthwhile for the steel alternate. Of course the addition of insulation will have 
cost implications, and perhaps maintenance implications as well. 

The situation for the hybrid alternate is not as clear. The temperature in the top plate of this section will 
probably be higher than what was found for a hollow steel girder, since it will tend to be insulated below by 
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the concrete. However it is probably also safe to assume that the average temperature in the concrete top 
slab will be less than it is in the concrete alternate. In the absence of any data on the temperatures in such a 
structure, we have assumed that the steel plate will see the same temperature as the top plate of the steel 
alternate, and that the temperature changes in the concrete portion of the section will be negligible. In 
response to such a loading, the deflection of the hybrid alternate is midway between those for the concrete 
and steel alternates. 

4.3.3 Long Term Deflections 
The effect of long-term concrete deformations must also be added to the deflections from thermal gradients 
in order to get a meaningful comparison of the deflections affecting ride quality for the three alternates.  

The long-term deflections of concrete can be separated into two components: shrinkage and creep. 
Shrinkage occurs independently of the applied loads and it does not tend to cause deflections in the 
superstructure, except for the secondary effect that it has on prestressing loss and the effect it has on 
column shortening. Creep occurs in response to a sustained applied load and tends to increase deflections 
that exist in the structure from those loads.  

Both steel and concrete alternates will experience deflections due to shrinkage shortening of the 
concrete column over time. The magnitude of the deflection will depend on the ambient humidity, curing 
practices and the height of the column. Strains can vary from about 200 to 500 microstrain. For “average” 
conditions, shrinkage strains that occur after erection of the superstructure on the order of 200 microstrain 
can be expected. For a 15m high column (column + foundation shaft), a deflection of about 3mm results. 
Column shortening, however, will not affect the ride quality except at abrupt changes in column height, 
such as stations and abutments where the difference in deflections between adjacent columns is large. 
Shrinkage will not otherwise affect the deflections in the superstructure, except that it will contribute to the 
loss of prestress in the concrete alternate, which will have some small effect of the prestressing deflection. 

The creep strain is proportional to the stress in the structure under permanent loading. Permanent 
loading includes the girder self weight, the superimposed loads from the windings and their supports, and 
prestressing. Since prestressing will tend to cause curvatures in the opposite direction from dead load 
bending, the creep deflection from prestressing will counteract creep deflection from dead loads, just as 
elastic deflections from prestressing will counteract elastic deflections from dead load. Since the creep 
curvature will depend on the total moment on the section over time, it is convenient to think about a “creep-
inducing moment” which is the difference between the prestressing moment and the dead load moment. If 
the prestressing moment is identically equal and opposite to the dead load moment along the entire 
structure, the creep-inducing moment will be zero and therefore the vertical creep deflection will be zero. A 
prestressing design that creates moments equal and opposite to the dead load moments is generally referred 
to as a “balanced” design, in other words the prestressing balances the dead load. 

It is generally not practical or economical to exactly balance the dead load with prestressing. However, 
in the case of the M3 system the unusually light live load and girder make it possible to design prestressing 
that is very close to balanced without an excessive economic impact. 

4.3.4 Total Deflections and Camber 
For both the steel and concrete alternates, it is possible – and necessary – to camber the girders in 
anticipation of service deflections. Both alternates will have to be cambered for dead load deflections. The 
concrete alternate would also have to be cambered for creep so that, with time, those deflections will tend 
to bring the riding surface closer to flat and level instead of tending to increase the deflections. 

Typically for roadway, and even light rail bridges, the girders are cambered to end up “flat” under 
permanent load deflections. It is also possible, however, to consider cambering the beams for live and 
thermal deflections. This is especially interesting in the case of M3, since cambering to counteract live load 
deflections would reduce the vertical acceleration of the vehicle as it crosses a span and improve ride 
quality. Though such camber would doubtlessly be beneficial, it will take careful study to determine what 
the actual optimum camber would be, since it would be necessary to consider the transient nature of 
thermal deflections, and the fact that the weight of the vehicle is not constant. 

The worst-case deflection for ride quality could be some combination of all of the above-mentioned 
deflections – or no net deflection at all. For example, in the case of the steel alternate, the thermal gradient 
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deflection is a positive 9 mm, while the live load deflection is about equal and opposite to that value. If the 
vehicle should pass at a time when the full thermal deflection is present, the net result would be that the 
total deflection due to live load and thermal gradients would be zero, which would be beneficial to ride 
quality. In this scenario, it is clear that cambering the girder upward to completely counteract live load 
deflections would be counterproductive. 

It should be noted, however, that negative thermal gradients exist in bridge girders as well. Such 
negative gradients for concrete bridges are presented in the National Cooperative Highway Research 
Program (NCHRP) Report 276, Thermal Effects in Concrete Bridge Structures. Though there is no similar 
report for all steel box girders to the authors’ knowledge, certainly such gradients exist, and present a topic 
for further study. 

Assuming for the moment that the deflection due to a negative thermal gradient is equal to the opposite 
of half the deflection from positive gradient, it may be that the optimum camber for the steel alternate is 
some compromise value. A value of about half of the live load deflection (plus the dead load deflection) 
would be appropriate as a first estimate. This value should be adjusted based on the expected fraction of the 
time that the thermal gradient deflections exist and their correlation with the operating hours of the system 
and the expected total vehicle weight during those hours. 

In the case of the concrete alternate, creep and thermal deflections would have to be considered as well 
when figuring live load camber. The creep deflection should be considered from the time that the 
suspension rail is installed, because the installation will account for creep occurring before that time. In our 
study this so-called “service creep” results in sag, though that would not necessarily always be the case. 
Typically the girder would be cambered to arrive at a “flat” condition late in service when creep has run its 
course. However since the creep deflection could potentially be positive or negative, and it has to be 
considered in conjunction with the thermal deflections, it is not immediately clear that the same approach 
would be appropriate for the M3 system, and the question needs further study. Assuming that service creep 
results in a sag of 3 mm, and positive thermal gradients result in a hogging that is roughly equal and 
opposite, something close to full camber to compensate for live load deflections would be appropriate. 
Table 4.2 shows deflections due to creep, temperature and live loads. 
 
Table 4.2. Deflection Summary 

 Creep 
Deflection 

Peak 
Temperature 

Thermal Gradient 
Peak Deflection 

Live Load 
Deflection 

Concrete -3 mm 23 ?C 3 mm -9 mm 
Steel N/A 30 ?C 9 mm -10 mm 
Hybrid -2 mm 30 ?C 7 mm -7 mm 

4.3.5 Horizontal Deflections 
The guideway will be subject to horizontal deflections during operations from wind, live loads and thermal 
loads, which will also affect the ride quality.  Horizontal thermal gradients require further study, as 
discussed above.  Horizontal deflections from wind and live loads can be broken down into a guideway-
beam comp onent, which comes from horizontal bending in the beams, and a pier component, which is the 
result of bending in the pier and rotations in the foundation. 

In the case of wind, there will be a dynamic structure response, and it will depend on the wind speed, 
gust characteristics, and the geometry (drag coefficient and natural frequencies) of the guideway. A 
complete analysis that considers all of these factors is beyond the scope of the current work; however, as a 
first approximation it is possible to calculate static deflection based on the wind loads given in the 
AASHTO code. For a 100 mph wind, AASHTO gives a net total pressure of 50 psf (2.4 kPa). Applying this 
load to the windward beam only, a total deflection of 60 mm is found. Approximately 40mm of that 
deflection comes from column bending. There will also be a load on the leeward beam, which is not 
considered in the above numbers. AASHTO stipulates a value of half that for the windward chord for 
leeward truss chords. If that loading is used for the leeward beam, the pier deflection will increase by about 
50% to 60 mm. This is a relatively large deflection, and it may dictate the use of stiffer substructure 
elements, though horizontal deflections at the top of the pier of up to 100 mm have been allowed for some 
light rail systems. 
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Assuming that the vehicle will only operate at full speed in winds of 50 mph or less, the deflection 
used for assessing the ride quality can be reduced. Since the wind pressure is proportional to the square of 
the wind velocity, the deflections will be one quarter of those given above, i.e. 15 mm for the piers and 5 
mm for the beam. 

4.4 Ride quality 
The static and dynamic deflection under live load are major considerations for ride quality, but they are not 
the only ones. Thermal gradients and long-term material deformations (creep and shrinkage) will also 
contribute to the total deflection. At this stage only vertical thermal gradients have been studied. The 
effects of horizontal thermal gradients will be considered at a later stage of the study. The thermal gradient 
for the steel cross section was taken from the Federal Railroad Administration Report No. DOT/FRA/ORD-
94/10, “Safety of High Speed Magnetic Levitation Transportation Systems…” and is given in the appendix. 
The thermal gradient for the concrete alternate was taken from the AASHTO LRFD Bridge Design 
Specifications, 2002. 

In the concrete alternate, the combination of deflections that would cause the worst ride quality is 
probably creep and live load deflection. The total deflection of live load alone is greater than the 
combination, since the creep deflection is positive at the point of maximum live load deflection; however, 
the creep deflection causes double curvature in the span, which would be more unfavorable from a ride-
quality perspective. The maximum change in deflection for this combination is about 6 mm and it occurs 
over about half a span length. Again, efforts would be made to camber the girder to help reduce this effect. 
A reduction of half of the creep deflection can be reasonably expected.  

For both the steel and concrete alternates, it is possible to camber the girders in anticipation of 
shrinkage and creep deflections. That way with time those deflections will tend to bring the riding surface 
closer to flat and level instead of tending to increase the deflections. Precamber can also be used to 
compensate for normal live load, but variations in load and dynamic behavior cannot be compensated. 

The seismic design requirements for the guideway for the M3 system are not fundamentally different 
from those for other bridge structures. Ideally the foundation and superstructure will be designed to remain 
elastic, and the columns detailed to respond in a ductile manner, though that philosophy may change 
depending on the location of the site and the local seismic risks. Further requirements unique to the M3 
system could include maximum tolerable deflection limits during seismic response (for example angle 
deviations at expansion joints) or buffers to prevent the vehicle from locking up and stopping too suddenly 
if it bumps up against the guideway. Such additional safety considerations will have to be addressed as the 
mechanical systems for the vehicle and suspension rail are developed further. 

Ride quality is often measured by plotting a spectrum of vertical acceleration vs. frequency (for a 
vehicle moving along the guideways) and comparing that with an empirically derived limit, such as the 
International Standards Organization ride quality standard shown in Fig. 4.2. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.2. ISO Standard for acceptable vertical acceleration for good ride quality. 
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. The problem of achieving good ride quality is particularly difficult at high speed because the 
vertical acceleration tends to increase as the square of the speed. Figure 4.3 shows the computed vertical 
acceleration spectrum for the baseline vehicle traveling along the hybrid guideway at 45 m/s. This 
simulation assumes full live load deflection with no precamber and no deflection reduction due to the 
attachment of the beam to the middle pier, but it neglects deflection due to creep and thermal effects. 

The vertical spectrum is dominated by the pier-crossing frequency, 1.25 Hz, and the lowest resonant 
frequency of the beam, 2.4 Hz, modulated by the beam crossing frequency. There is also some response 
near the higher frequency beam resonances: 3.8 and 9.8 Hz. Particularly noteworthy is the low amplitude of 
high frequency components, a result of the distributed nature of the magnetic suspension. More detailed 
and accurate simulations will be done in later phases of this project, but it appears that the M3 vehicle can 
have dramatically better ride quality than the ISO limits given in Fig. 4.2. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.3. Vertical acceleration spectrum for a baseline vehicle going 45 m/s on a hybrid guideway. 

4.5 Structural Issues 

4.5.1 Longitudinal Design 
Because the guideway design is controlled by deflections, the stresses from service loads are very minor. In 
the steel alternate the total service stress is less than 20% of yield, and the live load stresses are almost 
insignificant. The situation is much the same for the concrete alternate, though the stresses are somewhat 
higher in relation to allowable limits, at least for shear. In the case of a guideway on an 18m horizontal 
curve, the shear stresses from shear and torsion are still well within acceptable limits. For example, in the 
case of the concrete alternate the principal tensile stress in the web during service loading is less than one 
MPa (a value of about 1.5 would be acceptable). The shear stress in the steel alternate is even less 
compared with the allowable value. 

4.5.2 Seismic Design 
A seismic analysis of the system following the AASHTO LRFD specifications was performed on the two 
alternates to verify the preliminary member sizes. A peak rock acceleration of 0.4g and a soil coefficient of 
1.0 were assumed, indicating a high seismic zone on firm soil or rock. The foundation was assumed to be a 
1.8-meter-diameter single drilled shaft. This foundation type has been gaining popularity in California 
because of its excellent seismic performance and simplicity of construction. Because continuous girders are 
restrained longitudinally at the center column and left free to expand at the outer columns, a single column 
resists the longitudinal seismic actions. During transverse seismic response, the girders span horizontally 
between columns so that all columns are acting. Therefore the longitudinal response controls the design of 
the column. At some point it may be worthwhile to consider pinning the superstructure at one outer column 
in high seismic zones to allow all of the columns to participate in the longitudinal seismic response, 
however it is beyond the scope of this report to develop the special details required for such a connection. 

A 1.0-meter diameter column was chosen for the steel alternate. This alternates lightweight results in 
lower seismic demands and allows for the use of a smaller foundation and substructure elements. The 
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results of the preliminary seismic analyses indicate that this column and foundation are adequate for the 
loads suggested by the AASHTO specification. 

The key point to consider for the steel alternate superstructure with regards to seismic performance is 
that it will be supported on bearings. The tall narrow cross section will have to be stabilized either by 
providing tie-down bearings, diaphragms between the girders at the piers, or by devising a continuous 
connection between the girders and the hammerhead. Adequate bearing-seat width and restrainers will be 
provided to prevent loss-of-support failures. 

A 1.2-meter diameter column was used for the concrete alternate.  With the greater mass of this 
alternate, the larger stiffness keeps the displacement at acceptable levels. The same diameter drilled shaft is 
used, though it will require a greater steel content and penetration into the founding rock or soil. 

Stability is provided by the monolithic connection at the interior pier. As with the steel alternate, shear 
keys, adequate seat width and restrainer cables will be required to maintain support at the expansion piers. 

4.6 Conclusions and Recommendations 
All of the three alternates developed in this preliminary study would be acceptable for the guideway for the 
M3 system. An effort was made to achieve approximately equal performance between the three alternates so 
that the cost comparisons would be meaningful. The authors believe that this has been achieved more or 
less, though the different characteristics of concrete and steel have made exact equality impossible. The one 
that could possibly be called an outlier is the hybrid alternate, which has significantly greater stiffness and 
therefore lower live load deflections. It was necessary to develop it in this way, however, due to the nature 
of the construction technique envisaged. 

It is difficult to decide which alternate is would be preferred, and probably impossible without 
knowing the site, length of the project, and local construction conditions. In general, though, it is 
reasonable to conclude that the concrete alternate will be the least expensive by a significant margin. It is 
also likely that it will require the least maintenance and have the lowest lifecycle cost. This will be borne 
out in most locations in the United States, though there may be some places where steel may be less 
expensive because of local contractor experience and availability of the materials. 

It is difficult to say which alternate will perform the best in terms of ride-quality. The live load 
deflection response is similar for steel and concrete, with the concrete having a slightly greater dynamic 
response but a smaller static response. The total deflection of the hybrid is the lowest, giving it the best live 
load behavior. The price premium of the hybrid alternate over the concrete alternate is essentially paying 
for improved ride quality. 

The thermal deflection of the steel alternate causes its greatest performance problem. Though the 
vertical gradient causes a significant deflection, the deflections from horizontal gradients are likely to be a 
worse problem and need further study. We believe that insulation and reflective coatings will solve this 
problem, but at some as yet unknown increased cost. 

Creep deflections are the greatest concern for the concrete alternate, and although they could 
theoretically be limited to acceptable levels, uncertainties about actually being able to correctly predict 
them add a greater risk to this alternate. The hybrid alternate faces the same construction risk from creep, 
and the additional uncertainty about our ability to attach the top plate with sufficient stiffness and strength. 
It is expected that it will be possible to construct all of the alternates within adequate dimensional 
tolerances. Although past experience has shown that the tolerances actually achieved for both steel and 
concrete may be at the limit of what is needed, it should also be recognized that the current technology has 
been developed to deliver only the tolerances that have been required by road and rail bridges, and it should 
be expected that improvements for both materials can be realized if required for the M3 system. 

Based on our findings to date, there are potentially considerable advantages to the concrete alternate 
for its lower cost and its thermal-deflection characteristics. Its principal detractions are the uncertainties 
involved with creep deflections and the attendant construction risk. The advantages are significant enough 
though that it is advisable to construct a test segment to quantify and understand the risks. We recommend 
therefore that a prototype system of limited scale be built using concrete. Depending on the scale and end 
use of the system, it may be appropriate to build all of it, or only a portion of it in concrete, and the rest in 
steel. A cast-in-place structure would probably be the best choice, as it would be the most appropriate for a 
guideway of limited length and would still allow us to study the dimensional stability of concrete. 
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Several other important issues remain to be studied at this stage. Horizontal deflections from thermal 
gradients will likely cause deflections equal to or even larger than the deflections from vertical gradients. 
Since horizontal accelerations are more disturbing to passengers than vertical accelerations, this is an 
important area to study. Work needs to be done to determine the horizontal gradients that will exist in 
concrete and steel structures, and change the cross sections if necessary, to limit the deflections set up by 
these gradients. We recommend that both the steel and the concrete alternates be advanced through this 
next stage.  

Likewise, it will be important to consider horizontal accelerations from wind and live loads. The effect 
on those accelerations from deformations in the substructure should be considered in evaluating these 
effects. Work to be done includes determining the aerodynamic properties of the cross section, the response 
of the structure to a generic wind climate, and the effect of wind oscillations on vehicle performance. For 
live loads, additional rolling-stock type analyses should be performed for various guideway parameters to 
determine acceptable limits for foundation stiffness, pier height, etc. Work to optimize the span lengths for 
curves of various radii would also be warranted. 

The mounting hardware for the suspension rails is probably the most important item to develop. It 
needs to allow for easy adjustment both horizontally and vertically. If it were possible to develop hardware 
that allows for rapid and economical readjustment, then it would be possible to assume more risk in the 
dimensional stability of the initial construction, and would help greatly in eventually developing the lowest 
cost guideway. 

5 Vehicle 
MagneMotion is working with vehicle manufacturers to estimate the cost and weight of a vehicle. Figure 
1.1 shows an initial vehicle design with articulated magnet pods for suspension on a guideway with LSM 
propulsion. An improved design will be developed in a future phase of this project. 

The lack of any onboard propulsion equipment simplifies the interior design and makes it possible to 
put HVAC and other equipment in the nose and tail where streamlining prevents use for passengers. This 
reduces drag and lowers the center of gravity, both important for this application. 

The primary suspension is provided by the magnets but there may be a secondary suspension that has 
two components: the magnet pods have pivots with dampers so as to allow tight turning radii in both 
horizontal and vertical directions, and pneumatic springs allow improved ride quality and can, if desired, 
provide active control of ride quality, including tilting. 

Ride quality is often measured by determining the frequency profile of the vertical acceleration and 
comparing this with desired limits based on subjective experiments with passengers. The amplitude of most 
of the terms in the spectrum will increase at least as fast as the speed and in some cases they vary as the 
square of the speed. Hence reducing speed will almost always improve ride quality so the magnetic 
suspension by itself is adequate for lower speed applications. The maximum speed for which a secondary 
suspension can be omitted will be determined in a later phase of this project. 

Preliminary estimates indicate that a 24-passenger vehicle will weigh about 5.5 tonnes empty and cost 
about 330 k$. For comparison, a typical articulated light rail vehicle weights 40 tonnes empty and costs 
about 2,500 k$. The light rail vehicle has a crush load capacity of about 200 passengers, but in typical 
operation it only takes 3 24-passenger maglev vehicles to provide the same capacity as one light rail vehicle 
because of the higher average speed. Thus maglev vehicle cost less than half as much as for light rail and 
maintenance cost should also be much less. The improved comfort for passengers is a bonus. 

5.1 Issues involved in choosing vehicle size 
European and Japanese maglev developers have always viewed maglev as a modern form of train travel 
with the potential for higher speeds, lower maintenance cost, etc. The German Transrapid and the Japanese 
high-speed designs all use multicar trains with each train carrying several hundred passengers and train 
spacing of several minutes. In contrast, U.S. maglev developers have always thought of maglev as form of 
bus or airplane with a preference for smaller vehicles operating more frequently. All 4 designs that resulted 
from the U.S. 1992 National Maglev Initiative recommended the use of individual vehicles with capacities 
less than a 100 passengers. Following are some of the advantages of each approach. 

Advantages of using larger vehicles or trains: 
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?? Lower labor cost when operated manually 
?? Higher capacity is possible 
?? Lower aerodynamic drag per passenger 
?? Vehicles are less expensive per passenger 

Advantages of using smaller vehicles: 
?? High vehicle frequency 
?? Reduced propulsion power per vehicle 
?? Platoons are more versatile than trains 
?? Fewer stops per vehicle 
?? Easier to reuse regenerated energy 

For automated operation at speeds up to 45 m/s (101 mph) the advantages of using smaller vehicles are 
substantial. The use of a linear motor that does not depend on friction for braking makes it possible to 
operate with very short headway and hence the capacity advantage of a train is eliminated. At these speeds 
and for urban use the aerodynamic drag is not the major power consumer. The vehicle cost advantage 
disappears if the vehicles operate with higher top speeds so that fewer vehicles are required. If the 
operating speed were to increase by a factor of 2 to 3 there would be merit in some increase in size but 
there does not appear to be any operational advantage of using a long train for maglev. 

5.2 Vehicle design for the M3 system 
For urban use at speeds up to 45 m/s the M3 design is based on a vehicle that can carry 24 passengers seated 
and another 12 standing. When operated with platoons and 4-second headway within a platoon this size 
vehicle can transport up to 12,000 pphpd. 

For lower speeds and capacities a smaller vehicle can be used. Our baseline design for a smaller 
vehicle is one that carries half as many people as the high speed version. 

5.3 Secondary suspension 
The magnetic suspension can, by itself, provide good ride quality at low speeds but for operation at the 
maximum speed there are advantages in having a secondary suspension to improve ride quality. The 
secondary suspension design will be addressed in a later phase of this project. 

6 Control System 

6.1 Introduction 
For any modern mass transit system a digital control system is required. There are many ways to implement 
such a control system, and one concept is presented in this chapter. Only the high level concept of a control 
system is described here – there are many details of implementation that are left out for the sake of a 
concise, readable document. 

6.1.1 Goals 
Any control system for people movers should be designed with the following goals in mind: 
?? Safety 
?? Reliability 
?? Efficiency 
?? Flexibility (Expandability) 
?? Effective Fault Handling 

The most important goal of the control system must be safety. According to USDOT 2001 highway 
fatality statistics, more than 40,000 people died last year in automobile crashes (a fatality rate of 1.52 
people per 100 million vehicle miles traveled). While the general public accepts this rate, they hold mass 
transit to a much higher standard, with outrage at any deaths on a public transit system. Thus, safety must 
be the primary goal of the control system. 
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The transit system should also be reliable, such that avoidable traveler delays are minimized, and 
should be efficient, so that the transport resource is used to near its full potential (and not significantly 
limited by the control system). This ensures maximum return on investment.  

The control system should also be flexible, to be easily used for transit systems of differing types 
(shuttle vs. network) and variations in demand. At the same time, it should be expandable so that the 
system can be upgraded with additional guideway with minimal impact on existing routes. Finally, the 
system should have carefully planned fault handling to deal with problems as they occur, of both expected 
and unexpected types. 

6.1.2 Experience 
The control system concept proposed in this document is based, in part, upon a concept implemented 
successfully in an installation of a material handling system in an industrial factory carrying sensitive parts. 
The installation is capable of carrying more than 1000 vehicles per hour per lane. Note that while the 
concept will work for a transportation system carrying people, the actual implementation would be different 
due to more stringent safety standards for people movers. Nevertheless, the proposed preliminary control 
scheme concept is valid and based upon proven methods.  

6.2 Architecture 
The architecture for the proposed control system is a hierarchical one. A hierarchical control system has 
benefit of expandability. As the system grows, more mo dules are added at each of the lower levels (at some 
point it may be necessary to add another layer). The hierarchical system also minimized communication 
and required processing power, as each function can be implemented at the appropriate level. Fig. 6.1 
illustrates a concept of such a hierarchical control system. Note that a control system for a simple shuttle 
may be significantly simpler (2-layer). The control architecture here is designed to implement the control 
strategies of Section 6.3. 

In this concept, the block controller performs the following functions: 
?? Constantly tracks position of vehicle  
?? Closed-loop control of vehicle according to order from zone controller 
?? Drives the linear motor 
?? Keeps track of vehicle state information, vehicle ID, position, velocity, etc. 
?? Communicates with adjacent block controllers & Zone (& Possibly vehicle) 
?? Motor Synchronization / Vehicle Handoff / Liftoff, Estop, etc. 
?? Monitors status of block and inverter 

The zone controller performs the following functions: 
?? Constantly tracks position of vehicle 
?? Monitors Status of Power System, Block and Switch controllers 
?? Vehicle Coordination (multiple vehicles) 

o Grants movement permissions to vehicles (& blocks) 
o Ensures adequate vehicle spacing 
o Implements safe merge strategies 
o Responsible for vehicle protection functions  

?? Reports Errors to Central Controller 
?? Interfaces to station controllers 
?? Tracks vehicle information (ID, routing, etc.) 

The Central controller performs the following functions: 
?? Performs global optimizations 

o Vehicle selection and routing 
o Manages vehicles 
o Performs switching decisions (vehicle routing) 

?? Displays system condition to operator 
?? Records/reports fault conditions 
?? Tracks network statistics 
?? Communicates with all controllers 
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o Uploads software updates to entire control system 
o Diagnose system problems  
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Fig. 6.1. An example of a hierarchical control system. 

6.3 Preliminary proposed control scheme 
The following control scheme is based upon a previous control scheme implemented by MagneMotion. It is 
only a preliminary concept and needs to be fully adapted to a people-mover application. It is designed to 
match the one-vehicle-per-block constraint of a linear motor based system. 

6.3.1 Constraints 
The design of the proposed control scheme was strongly influenced by the system constraints. The 
limitation of one vehicle per LSM block in the system imposes a significant constraint on how the system is 
operated. The system must ensure that under any normal set of operational circumstances, each vehicle 
must be in a separate block. In addition, due to the fact that the stopping distance for a vehicle may be 
several blocks, each vehicle must at all times have a dedicated block for the vehicle to stop, where no other 
vehicles are allowed.  

Other constraints include the headway criteria, emergency egress points, stop exclusion areas (in 
switches, etc.), and emergency stop capabilities. A variety of headway constraints may be imposed on the 
system, including “brick-wall”, slightly less conservative “safe” headways, and “platoon” headways.  

 “Brick wall” headway is defined as the minimum headway between vehicles such that if a vehicle 
comes to an immediate stop (e.g., hits a brick wall), the following vehicle will be able to stop in the 
intervening distance. A “safe” headway is defined as the minimum headway between vehicles such that if a 
vehicle applies maximum braking, the following vehicle will be able to stop without collision.  “Platoon” 
headway is a specified headway between vehicles, which may be significantly shorter than the other two 
types, with the inter-vehicle spacing tightly controlled (with the assumption that if a vehicle operates 
incorrectly, other vehicles within the platoon will have only a small difference in velocity, minimizing 
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damage in a collision). In this system, these definitions are further amended to mean that a following 
vehicle will stop in the block before the preceding vehicle. 

Finally, there are the ride quality and performance constraints of the system, described as acceleration 
and velocity limits. 

6.3.2 Waypoint (target) concept 
The topology of the track, from the standpoint of the control system, consists of a set of LSM blocks and an 
ordered set of locations in those blocks called ‘waypoints.’  

Several types of waypoints are defined: 
?? Target Waypoint 
?? Diverge Waypoint 
?? Merge Waypoint 
?? Junction Waypoint 
?? Speed Sign Waypoint 

The proposed system is based on a ‘target’ waypoint concept. A target waypoint is a location on a 
track where a vehicle is given permission to stop. Each target may be ‘held’ by a single vehicle only. The 
basic system operation is based on the granting and relinquishing of targets to vehicles. The movement of 
the vehicle is based upon the requirement of a vehicle to stop at the last target it was granted. Ideally the 
vehicle will move at maximum velocity and acceleration consistent with stopping at the target location, 
resulting in the shortest possible transit time. In actuality, some margin must be allowed for dealing with 
unexp ected contingencies. 

A diverge waypoint is the location at which the track bifurcates. A merge waypoint is the location at 
which two tracks converge. A junction waypoint is the boundary between two zones. When a vehicle 
crosses this boundary, one zone hands responsibility for the vehicle over to the next zone.  

A speed sign waypoint indicates the allowed speed on a section of track. A vehicle must not move 
faster than the limit of the last speed sign passed, and must also move no faster than the limit of the next 
speed sign at the time the vehicle arrives at its location. Thus, each vehicle obeys the limits of both the last 
speed sign passed, and the next one in front. When a speed sign is passed, the next speed sign is acquired.  

6.3.3 Target placement 
Targets would typically be placed at the end of each block. When a vehicle stops at such a location, as soon 
as it is allowed to move again, it clears the block in the least amount of time relative to other possible target 
positions in the block. Thus, other vehicles may gain entry to the cleared block quickly. When several 
vehicles are queued up (one per block), they will move out most quickly with this placement. Fig. 6.2 
shows placement of several waypoints along with velocity profiles for three of the targets. Each vehicle 
must plan on stopping at the last acquired target until it acquires a new target. The dashed lines represent 
the planned velocity profile (verses time) stopping at each of three targets. The vehicle will only follow the 
dashed stopping profile in the case that the following target is not free to be acquired. 

Another possible location for targets on high-speed portions of a guideway layout would be at 
emergency egress points near supports. Thus, in the case of a system stop, vehicles would already stop at 
the egress points and not have to move later, and would prevent the necessity to walk on the guideway to 
get to an egress point.  

Targets would also be placed at station stops, and any offline parking locations.  
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Fig. 6.2. Waypoint placement and velocity profiles. 

6.3.4 Target acquisition  
In the proposed control concept, a new target is requested for a vehicle when: 
?? The current target is not the destination of the vehicle, and  
?? The vehicles speed is impacted by the location of the current target 
If the vehicle’s current destination is the target, then the vehicle should stop at that location, and thus does 
not request a new target. A short time before a target location begins to impact vehicle movement (when a 
vehicle must start slowing down, or limit its acceleration due to the target position), a new target is 
requested for the vehicle.  

One benefit of requesting a target only when necessary is that in the case of a system shut down of 
some type, the vehicles come to a stop as quickly as possible at their assigned targets (which may be egress 
points and station bays). This is also a type of fail-safe mechanism, such that if a higher-level control is 
inoperable or not communicating, no new targets are granted and the vehicles come to a quick stop. Also, 
an emergency stop can be implemented by means of denying all new target requests, and the vehicles all 
stop at predictable locations outside of exclusion zones (and again, often at station bays or egress points (in 
the small chance that they need to be used)). 

When a new target is requested for a vehicle, the control system parses the list of waypoints in search 
of a new target. As the system parses the list, it performs certain checks at each waypoint to ensure that it is 
safe to grant a new target at or beyond the waypoint. 

As the control system searches the ordered list for a new target, and comes across a diverge, the system 
checks to see if the diverge is operational and in the correct position. If operational and in the correct 
position, the system searches along the correct path (according to the switch settings of the vehicle’s order) 
for the next waypoint. If not operational, the target request is rejected (no new target granted). If the switch 
is operational, but not in the correct position, the switch is commanded to move to the correct position (if 
not already) and the target request is rejected. Upon a subsequent request, when the switch is in the correct 
position, the system searches for the next waypoint along the correct route. A merge waypoint operates in a 
similar manner to a diverge waypoint. Thus, a vehicle must be prepared to stop at the target before a switch 
until the switch is operational and in the correct position. 

A junction waypoint on the path indicates that the target request should be forwarded to the zone 
adjacent to the boundary (no new target is granted until a response is received from the adjacent zone). The 
adjacent zone then continues with the target search, parsing its own list starting with the junction. 

When a target search reaches a new target, further checks are made before the target is assigned. If the 
block that contains the target is not operational, the target is not granted. If the target is assigned to another 
vehicle, the target is not granted. Otherwise, the vehicle is granted the new target.  
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6.3.5 Target release 
The target release criteria can be used to implement different headway strategies. The release mechanism 
used must ensure that two vehicles are never assigned targets in the same block, and that each vehicle 
always has an assigned target.  

One possible strategy is to release the targets in a block when a vehicle has completely exited the block 
(the entire vehicle is in the following block). This strategy results in “brick wall” headways between 
vehicles, since a vehicle must be tasked to stop at a target in a block prior to the preceding vehicle. As 
previously stated, a vehicle is moved in such a fashion that it is always able to stop at the last target granted 
to the vehicle, and in this case no target will be granted in a block which already contains a vehicle. 

Another strategy is to release the targets in a block when a vehicle is, at maximum deceleration, no 
longer able to stop in the block. Thus, targets may be released for a vehicle in a block before the vehicle 
passes the block (and to do so, the vehicle must have been granted a separate target downstream at which to 
stop). This strategy results in “safe” headways. 

Finally, for platooning, one several strategies may be used. If the platoon spacing is always at least a 
block length, then one of the above strategies may be applied to each platoon, as opposed to each vehicle. 
The releasing of targets must be based upon the location of the last vehicle in a platoon. In another possible 
platooning strategy, one of the first two prior strategies is again used for releasing targets by the last vehicle 
within a platoon. A target held by a preceding vehicle within a platoon may be released to the immediately 
following vehicle as long as the preceding vehicle has acquired a target in another block. This strategy will 
easily allow for non-standard sizing of blocks, and each vehicle will still have a dedicated block in which to 
stop. To summarize, one of the first two methods is used for spacing platoons rather than vehicles, and 
another layer of control is added to ensure adequate spacing between vehicles within a platoon. 

6.3.6 Benefits 
The proposed scheme is able to meet high throughputs in a safe manner while respecting the one vehicle 
per block limitation. It is flexible in terms of the headway strategy used, and easily expandable. Through 
proper target placement, the algorithm supports such design goals as sub-block switching and can limit the 
loading of support structures by limiting the number of vehicles on a particular track section. The scheme, 
through proper placement of targets, can also support stopping only at egress points along the guideway 

This system is fail-safe in the sense that when a controller or a communication link is not operational, 
new targets are not granted and the vehicles come to a stop at their last acquired target. 

6.3.7 Operational strategies 
To exploit the full capability of the transport system, certain strategies may be used. In a high speed urban 
system with on-line stations, it will likely be necessary to use multi-bay stations to achieve desired 
throughput, as shown in section 6.4.2.  

High-level control strategies may be layered on top of an existing control system by the central 
controller or at the track layout stage of design. For instance, greater throughput may be acquired by using 
strategies such as selective station servicing, where every vehicle does not stop at every station. Each 
vehicle may, for instance, service two out of every three stations, with different vehicles serving different 
sets. A passenger can still move from his origin to his chosen destination by selecting the correct vehicle or 
by changing vehicles. Since fewer stops are required, greater throughput may be achieved. Also, demand-
based station servicing may be used. For instance, vehicles may skip stations where there is no demand 
(which would require knowledge of the destination of each passenger). Platooning strategies may also be 
used to improve throughput. These topics will be the subject of future work. 

6.4 Preliminary simulation 
Preliminary simulations were performed to examine the basic limitations of the system. One such limitation 
is line throughput – the maximum capacity of the line. Using some basic assumptions, it was discovered 
that with a ‘safe’ headway, the line has a capacity beyond the goal of 12,000 passengers per hour per 
direction (pphpd). The next most significant limitation investigated was throughput limitations of the 
stations, as they were assumed to reside on-line. The simulations described below focus on the limitations 
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presented by the necessity to stop at on-line stations. With certain operational strategies, the simulations 
showed that the target throughput could be met with on-line stations. 

6.4.1 Assumptions 
The simulations were performed using the assumptions for performance and operational strategies given in 
Table 6.1. 
 
Table 6.1. Simulation Assumptions 

 

 

The simulations were performed based upon a crude model of the control system previously described. 
The stopping point for each vehicle (station bay) was assumed to be at the end of each block within the 
station. The assumed acceleration was based upon passengers standing in the vehicle to achieve maximum 
capacity.  

It should also be noted that the throughput improves when shortening blocks, due to the constraint of 
one vehicle per block. Most of the benefit of shortening blocks is achieved by 18 meters, but additional 
capacity may be gained by shortening the blocks within stations further.  

6.4.2 Results 
Preliminary simulations were performed with a range of one to five bays per station. It was assumed that 
for multi-bay stations, a fleet of vehicles would move into the station, dwell, and leave the station. A fleet 
of vehicles is made up of the number vehicles that fit in the station at once (the number of bays in the 
station). To calculate throughput, the time was calculated from the start of the exit of one fleet of vehicles 
to the arrival of the next. This time was added to the station dwell time to realize the total time that the fleet 
occupied the station. From this value, the average throughput may be calculated. Fig. 6.3 illustrates a 
scenario with 4 bays and 6 vehicles. As the first fleet of four exits, the next vehicles enter and stop at the 
first two bays in the station. 

Item Value 
Max Acceleration 1.6 m/s2 
Station Type On-line 
Headway Type “Safe” 
Dwell Time 15 s 
Block Length at stations 18 m 
Max Velocity 45 m/s 
Vehicle Occupants 36 



  

 

31 

 

Station to Station Movement

-100

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80

Time (Seconds)

P
o

si
ti

o
n

 (
M

et
er

s) Lead Vehicle
Vehicle 2
Vehicle 3
Vehicle 4
Vehicle 5
Vehicle 6

 
Fig. 6.3.  Typical Simulation of a 4 bay station with 6 vehicles 

A summary of the results illustrated in Fig. 6.4. Note that a minimum of four bays is required to 
achieve the desired metric of 12,000 pphpd. Selective stopping strategies may further enhance throughput, 
or reduce the required number of bays. 
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Fig. 6.4.  Station throughput as a function of the number of bays. 

6.5 Conclusions 
The primary conclusion is that a throughput of 12,000 pphpd is achievable under certain assumptions using 
the control system concept described. The line is able to meet the capacity when using a “safe” headway 
strategy, as previously defined. The stations are able to meet this throughput through the use of multiple 
sequential bays per station. Although a basic framework exists, additional work is required to further tailor 
the control scheme to the people mover application and perform more detailed simulation of the control 
strategies. 
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6.6 Future work 
The following tasks should be pursued in the near future: 
?? Define Requirements: functionality, performance, nominal safety, benchmarks; 
?? Develop Control Algorithms based on several headway criteria; 
?? Simulate Control Algorithm(s); 
?? Develop Control Architecture; 
?? Investigate high level operational strategies. 
Additional tasks are required further in the future in the implementation of final design to carry people. The 
near term tasks are detailed below. 
1. Define Requirements 
The appropriate requirements for a control system will be defined, appropriate for this stage of 
development. These requirements include performance (throughput), functionality, headway constraint, a 
virtual track definition for purpose of benchmarking, and safety insofar as collision avoidance in the control 
algorithms is concerned. The virtual track definition will include a representative section of track with 
stations, dwell times, etc., that can be used to measure the relative performance of control algorithms. 
Requirements for safety regulations, reliability, and redundancy are important, but will be examined and 
considered in a later stage of development, and will not be included in this stage. This will allow for the 
most progress, appropriate to this stage of development, to be attained. 
2. Development of Control Algorithms 
A set of control algorithms will be developed, appropriate to the system constraints (one vehicle per block, 
etc.) and requirements. A variety of related algorithms will be developed based upon different headway 
criteria.  
3. Simulation of Control Algorithms 
A simulation of the control algorithm on the benchmark track will be performed. This simulation will be 
performed based upon ideal vehicle behavior to give nominal throughput performance. Optionally, a 
variety of stopping strategies (vehicles not stopping at every station) may also be simulated to calculate the 
effect on performance. 
4. Develop Control System Architecture 
Based upon the control algorithms of task 2, an appropriate control system architecture will be designed at 
a high level. The functionality of each component of the architecture will be determined and described, in 
relation to the control algorithm. 
5. Investigate high-level operational strategies 
High-level control strategies may be layered on top of an existing control system by the central controller 
or at the track layout stage of design. For instance, greater throughput may be acquired by using strategies 
such as selective station servicing, where every vehicle does not stop at every station. Each vehicle may, 
for instance, service two out of every three stations, with different vehicles serving different sets. A 
passenger can still move from his origin to his chosen destination by selecting the correct vehicle or by 
changing vehicles. Since fewer stops are required, greater throughput may be achieved. Also, demand-
based station servicing may be used. For instance, vehicles may skip stations where there is no demand.  

7 Typical applications 
In Section 3.1 it was shown that, for a simple model, the travel time is 30 seconds more than it would be if 
the acceleration and braking were instantaneous. This time estimation method has been used in the 
following discussions of applications. In the next phase of this project more accurate estimates will be 
made for specific examples. 

7.1 Short shuttle 
There are many practical applications for a shuttle to move people a distance of a mile or two with few if 
any intermediate stops. A common example is to provide transportation from an airport, university campus 
or medical center to a remote parking lot. The best approach is to have a loop at each end so that the 
vehicles always operate in the same direction and vehicle headway can be kept low. With an 18.3 m (60’) 
radius turn it does not require much space for the vehicle to reverse direction. With a complete 3.22 km (2 
mile) loop it is possible for vehicles to make a round trip every 3 minutes. Six vehicles operating with 30 
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second headway would provide a capacity of 4,320 pphpd. By using 6 platoons of 4 vehicles each and 
operating with 40 seconds between platoons, each vehicle makes 15 round trips per hour for a capacity of 
12,960 pphpd. The same capacity can be maintained for longer loops by increasing the number of vehicles. 

In some cases a single guideway will suffice with one or more vehicles shuttling back and forth, but 
this severely limits capacity and increases average wait time. For example, 2 vehicles operating as a 
platoon with 4-second headway could make a 1-mile round trip every 3 minutes for a capacity of 1,440 
pphpd. In off-peak times a single vehicle could make a round trip every 5 minutes for a capacity of 432 
pphpd. 

7.2 An alternative to light rail and rapid transit 
Light rail and rapid transit normally operate without a precise schedule but with an average time between 
trains that is a function of the time of day. For this mode of operation any reduction in wait time is 
equivalent to increasing average speed. The example for a shuttle loop showed that a capacity of over 
12,000 pphpd is possible with an average wait time of only 20 seconds. As an example, a trip of 12 km (7.5 
mi) with 5 intermediate stops requires 8.6 minutes, including an average dwell time of 20 seconds per stop, 
for an average speed of 23 m/s (52 mph). This is twice the average speed of typical rail based transit 
systems. 

The advantages of M3 are even more significant when the mode of operation takes advantage of station 
skipping strategies. As a simple example, assume that the vehicles are operated in platoons of 3 with each 
vehicle skipping every third station but synchronized so that it is possible to go from any one station to any 
other station without changing vehicles. For the preceding example this eliminates 2 stops thereby saving 
110 seconds so the average speed is increased to 29 m/s (64 mph). 

In some cases, such as during rush hours, it may be preferable to not guarantee that a rider can go from 
any station to any other station as long as average travel time is short. There are several ways to reduce the 
number of stops by more than a factor of 2 with a net decrease in travel time for the average rider. In these 
more complex scenarios it is desirable to adapt the stopping strategy to the demand with a suitable central 
control system. The important idea is that creative scheduling can increase average speed without reducing 
capacity. 

7.3 An alternative to commuter rail 
In the U.S. most commuter rail systems uses diesel locomotives to push and pull 5 to 10 car trains. They 
tend to have high peak demand but low average demand. However, part of the reason for low off-peak 
demand is that the usual mode of operation is to keep train length long enough for peak load and simply 
decrease the frequency of service in off-peak, a passenger-unfriendly strategy. For these applications the 
use of small vehicles allows higher frequency off-peak service and this will almost certainly increase 
demand. But there are other strategies that take advantage of the high speed of maglev. 

Commuter rail systems usually operate on a schedule, and this allows a number of operational 
strategies for maglev. In the morning there is usually a high demand for trips from urban areas to city 
center stations and the opposite is true in the evening. In this case we can create express service without the 
need for express tracks. Consider the example of a 40 km long commuter rail line. In order to provide faster 
service it is common to restrict the number of stations that receive good service but this has the bad effect 
of creating traffic congestion at the stations with good service. 

A better strategy is to have more stations and a better scheduling algorithm. Assume, for example, that 
there is a station every 2 km (1.2 mi) so there are 19 intermediate stops. Without station skipping the 
complete trip would take 30.6 minutes at an average speed of 22 m/s (49 mph), fast compared with any 
mode, including a car in urban areas. But suppose a 16 minute period was dedicated to having all vehicles 
making express trips from each urban station to the city center or the reverse. The 40 km trip would then 
take 15.3 minutes for an average speed of over 40 m/s (88 mph) and all trips would be completed in 16 
minutes. As soon as a vehicle deposits its load in the city it returns so that the vehicles are returned to urban 
stations. The process can then be reversed by reversing the direction of travel on the guideway. A few 
intermediate stops can be provided to facilitate shorter trips but some passengers may have to change to 
make a desired trip. The key idea is to provide express service for the majority of riders and adequate 
service for the rest. 
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The outer extremities of commuter rail lines often have only single-lane guideway. In this case it may 
be desirable to have off-line loading and unloading so that vehicle passing is possible. Offline loading will 
require switch activation, and this reduces capacity, but for most commuter rail lines the resulting capacity 
will be more than adequate. As people move further from city centers, commuter rail could be one of the 
most cost effective ways to eliminate congestion on the highways at rush hour. 

8 Cost estimates 
This section itemizes system components and estimates the cost per mile for the M3 Urban System. Costs 
are compiled from information supplied by component designers and manufacturers and have been 
confirmed by a second source where possible. In a few instances there is not enough information to make 
an accurate estimate, but all of the primary costs have been determined after consultation with appropriate 
manufacturers and vendors. MagneMotion will continue to refine the cost estimates as the design evolves.  

The cost estimates for all guideway related items are computed on a per-unit-beam-length basis. The 
baseline design calls for double-span beams that are 72 meters long. Each 72-meter length of guideway 
contains the following: 
?? 2 72-meter long beams  
?? 2 piers 
?? 8 36-meter long LSM stators 
?? 1 inverter station containing 8 inverters and associated controllers 
?? 1 hub controller and communication module 
?? 4 power cables for distributing DC power, 2 in each beam 

The DC power is provided by a rectifier station located every 8 km (4.97 miles), and each station 
contains a power transformer and rectifiers that provide separate +750 and –750 VDC power with a total 
power rating of 1.5 MW. The rectifier station may include a source of emergency power, but this cost has 
not been included; a rough estimate is $50,000 added cost for every rectifier station for a 50 kW generator. 

Power station rating and spacing is consistent with operating 4 vehicles per mile of dual guideway, so 
this is used as the nominal vehicle requirement. For different applications the number of vehicles per mile 
could vary substantially. If smaller and lower speed vehicles are used the cost of the vehicles and power 
system will be somewhat lower. 

The order of the costing section follows highest to lowest cost components. 
1. Power distribution and control 
2. Guideway 
3. LSM stator 
4. Vehicles 

8.1 Power distribution and propulsion control  
Key components of the propulsion system are the inverters that transfer power between a DC bus that 
distributes power along the guideway and the LSM windings. For the baseline design it is assumed that 
there is an inverter station at every other pier and it contains inverters for driving the port and starboard 
motors for each lane of a dual guideway with different inverters for different directions from the inverter 
station. Later studies may show it feasible to reduce cost by using fewer inverters that are multiplexed to 
drive more than one block, but the baseline design is based on separate inverters for each motor block. 

Cost estimates are based on the following assumptions: 
?? There is an inverter station every 72 meters and it contains 8 inverters. 
?? Each inverter has a rating of 400 kVA and operates off of a 750 VDC bus. 
?? Inverter pricing includes control, power sections and filtering. 
?? Inverters will have regeneration capability but no braking resistors. 
?? Inverter cooling and heating capabilities are suitable for any urban environment. 

The baseline design uses two DC buses: +750 VDC and –750 VDC. The port and starboard motors are 
powered from separate buses so as to achieve redundancy against possible failures and to allow the 
majority of the power to be distributed at the 1,500 VDC level in order to allow longer distribution 
distances than are commonly used for rapid transit or light-rail. Relatively inexpensive IGBT power 
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devices are now available for operation with a 750 VDC bus but the final choice of voltage will be based 
on minimizing the cost of inverters and power distribution components. The DC bus is designed to carry 
750 kW up to 4 km (2.49 miles) in each direction with a typical efficiency of 97% at full load. The rectifier 
station can provide 50% over capacity for several minutes in order to deal with power fluctuations. 

System communication and wayside electronics are anticipated to require 1 node at each rectifier 
station. 

8.1.1 Cost basis: 
MagneMotion designed LSM control systems are currently operating in material handling applications. 
These cost estimates are based on scaling the cost based on higher power levels and greater requirements 
for safety and redundancy. 

Costs for the rectifier station and power cables are based on discussions with Massachusetts Electric 
Construction Co. and inverter cost estimates are based on discussion with Yaskawa Co.  

8.1.2 Cost estimate 
Table 8.2. Cost estimate for power distribution and propulsion control. 

Item\Costing Unit cost Usage/72m $/72m $/mile 
Controller module including cabling 4,000 $ 8  32,000 715,264 
Hub control 4,000 $ 1  4,000 89,408 
Installation 60 $/hr 512 hrs 30,720 686,653 
Inverters 30,000 $ 8  240,000 5,364,480 
Inductive power transfer modules 20,000 $ 1  20,000 447,040 
Power cable 26 $/m 288 m 7,488 167,372 
Rectifier station, 1.5 MW 1,000,000 $/recsta 0.009 recsta 9,000 201,168 
Total before contingency     343,208 7,671,385 
Total with 25% contingency     429,010 9,589,232 

8.2 Guideway 
Guideway cost is based on our baseline design: a dual guideway with double-span 72-meter long guideway 
beams and pier construction. The cost estimate includes provisions for mounting the LSM and labor hours 
for anchoring and aligning the LSM stator to the guideway beam. Pricing assumes piers for both concrete 
and steel guideway configurations are of concrete construction. Steel reinforcement is included in concrete 
and hybrid configurations. 

A 50% contingency factor has been added in the expectation that additional expenses will be necessary 
to meet installation and operational requirements. Structural requirements have been met in the preliminary 
investigations of guideway designs using both concrete and steel but operational dynamics may dictate 
refinements to these designs. When a site is chosen and beam materials are selected for that site, guideway 
optimization simulations will dictate full beam requirements. 

8.2.1 Cost basis 
Cost estimates are based on information supplied by Earth Tech of Long Beach CA, and are based on their 
recent experience with installation of the Vancouver Skytrain, and Bankok Transit system. For a more 
detailed breakdown of guideway component costs see the Supplemental Report, M3 Guideway Design and 
Analysis. This includes a report by EarthTech that contains tradeoff studies of concrete, steel and hybrid 
beams and also contains cost backup based on the Vancouver Skytrain construction costs. 

8.2.2 Cost estimate 
Table 8.1 is from M3 Guideway Design and Analysis, a MagneMotion document. 
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Tables 8.1. Guideway cost in $ per mile including 50% contingency. 

Steel alternate Unit Rate Unit Quantity $/72m $/mile 
Steel superstructure $3.00 kg 98,267 294,801  6,589,392 
Bent cap concrete $400.00 m3 11.5 4,600  102,819 
Column concrete $300.00 m3 9.5 2,850  63,703 
Drilled shaft $1,500.00 m 24 36,000  804,672 
Bar reinforcement $1.35 kg 16,500 22,275  497,891 
Bearings $1,500.00 EA 12 18,000  402,336 
Total    378,526  8,460,813 
Total with contingency. 50%   567,789  12,691,220  
 
Concrete alternate Unit Rate Unit Quantity $/72m $/mile 
Concrete superstructure $700.00 m3 93 65,100  1,455,115 
Bent cap concrete $400.00 m3 11.5 4,600  102,819 
Column concrete $300.00 m3 13.6 4,080  91,196 
Drilled shaft $1,500.00 m 24 36,000  804,672 
Bar reinforcement $1.35 kg 30,630 41,351  924,278 
Post-tensioning steel $4.00 kg 3,800 15,200  339,750 
LSM support ties $2.75 kg 4,307 11,844  264,737 
Bearings $1,500.00 EA 8 12,000  268,224 
Total    190,175  4,250,792  
Total with contingency 50%   285,263  6,376,187  
 
Hybrid alternate Unit Rate Unit Quantity $/72m $/mile 
Concrete superstructure $700.00 m3 93 65,100  1,455,115 
Bent cap concrete $400.00 m3 11.5 4,600  102,819 
Column concrete $300.00 m3 13.6 4,080  91,196 
Drilled shaft $1,500.00 m 24 36,000  804,672 
Bar reinforcement $1.35 kg 30,630 41,351  924,278 
Post-tensioning steel $4.00 kg 3,800 15,200  339,750 
Top Plate $2.75 kg 28,700 78,925  1,764,132 
Bearings $1,500.00 EA 8 12,000  268,224 
Total    257,256  5,750,186 
Total with contingency 50%   385,884  8,625,279  

8.3 LSM stator 
The LSM stator is made up of two major components: laminations and windings. Included in the LSM 
costs are the costs for mounting and aligning the stator laminations and installing the windings. 

8.3.1 Cost basis 
Lamination estimates are by Tempel Steel assuming that the lamination stacks are fabricated on site from 
stamp ed and spooled M19 24-gauge electrical steel. Winding estimates are based on corporate experience 
with producing and installing LSM windings. Although manufacturing methods for the 3- phase windings 
have not been determined, wound on or off site cost estimates are expected to be similar. 
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8.3.2 Cost estimate 
Table 8.3. Cost estimates for LSM stator per 72 m of guideway. 

Item\Costing Unit cost Usage/72m $/72m $/mile 
Laminations (44.7 kg/m x 288 m) 1.90 $/kg 12874 kg 24,460 546,726 
Lamination mounting hardware 33 $/m 288 m 9,504 212,433 
Windings (28.2 kg/m x 288 m) 4.95 $/kg 8122 kg 40,202 898,593 
Winding mounting hardware 33 $/m 288 m 9,504 212,433 
Labor to assemble & align laminations 60 $/hr 512 hrs 30,720 686,653 
Labor to wind & assemble windings 60 $/hr 512 hrs 30,720 686,653 
Total before contingency     145,110 3,243,493 
Total with 25% contingency     181,387 4,054,367 

8.4 Vehicle 
Two vehicle configurations will be considered: a baseline 45m/s vehicle with secondary suspension and a 
smaller 30 m/s, vehicle with minimal if any secondary suspension.  

A secondary eddy current brake is planned for emergency use and a tertiary mechanical brake is 
planned as an added safeguard but with the expectation that it will never be used. No detailed designs have 
been completed so only rough estimates are used for budgeting purposes. 

8.4.1 Cost basis 
The vehicle body estimates are based on discussion with Hall Industries, TPI, CWA and others. The 
suspension component costs are based on discussions with MagneMotion magnet and structural component 
vendors. 

8.4.2 Cost estimate 
The baseline vehicle has seats for 24 and room for 12 standees. It has 4 magnet pods that include a 
secondary suspension suitable for speeds to 45 m/s (101 mph). The smaller vehicle has seats for 12 and 
room for 6 standees. It has 2 magnet pods and no secondary suspension and is suitable for speeds up to 30 
m/s (67 mph).  
 
Table 8.4. Vehicle cost itemization in k$ per vehicle. 

 12 pas 24 pas 
Shell 40 60 
Suspension struts  16 32 
Levitation pods   
  Laminations 4 8 
  Magnets  7 14 
  Assembly 1.2 2 
Power electronics 20 30 
Batteries, power pickup, etc. 20 30 
Communications 8 8 
HVAC, seats, etc. 40 80 
Total before contingency 156 264 
Total with 25% contingency 195 331 

8.5 Cost summaries 
Table 8.5 summarizes costs, in 2002 dollars, of each major component. It is assumed that the installation is 
at least 10 miles long with the expectation that costs will be somewhat higher for shorter installations. The 
extended price includes the contingency factors for component parts, but does not include civil works, 
shipping, or land acquisition costs  

Component contingencies account for uncertainties in our cost estimates and are based on discussions 
we have had with various vendors regarding the relative risk associated with the estimates. Even with the 
25% to 50% contingencies added, M3 costs are well below those of competing transit systems. 
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Table 8.5. Total cost in M$/mile for three guideway alternates and baseline vehicles. 

 Concrete Hybrid Steel 
Power & control 9.589 9.589 9.589 
Guideway 6.376 8.625 12.691 
LSM stator 4.054 4.054 4.054 
Total excluding vehicles 19.779 22.260 26.351 
4 Vehicles 1.322 1,322 1.322 
Total with 4 24-pasenger vehicles/mile 21.101 23.582 27.673 

For a system using the smaller vehicles the power system cost will be reduced because of the reduced 
power demand. The fact that winding inductance plays such an important role limits the reduction in 
inverter rating that is possible, so the reduction is not as great as might be expected. A detailed analysis has 
not been done, but it is estimated that the cost of the power and propulsion control components will be 
reduced by 20%. This leads to the cost summary in Table 8.6. 
 
Table 8.6. Cost summary in M$/mile for three guideway alternates and small vehicles. 

 Concrete Hybrid Steel 
Power & control 7.671 7.671 7.671 
Guideway 6.136 8,617 12.707 
LSM stator 4.054 4.054 4.054 
Total excluding vehicles 17.861 20,342 24.433 
4 Vehicles 781 781 781 
Total with 4 12-pasenger vehicles/mile 19.183 21.664 25.755 
 
The cost objective of $20M per mile is clearly achievable if we can improve the design further and reduce 
the need for large contingencies. 

9 Demonstration prototype and future plans 
The design concepts described in this document have been tested by constructing the demonstration 
prototype shown in Fig. 9.1. This prototype uses full-scale magnets but the vehicle is shorter and narrower 
than the vehicles described in Section 5. The prototype is fully functional, and has met its design 
objectives. The agreement between predicted and measured quantities ranged from fair to very good. The 
computer models used to design the demonstration system correctly predict the system behavior with good 
accuracy so it is reasonable to expect similar validity for the models of the full-size system. 

Table 9.1 gives data that is exemplary of the many measurements made; it shows the relatively good 
agreement with predictions. Prototype testing involved a much wider range of load than is planned for a 
full-scale vehicle, so in normal operation the gap will only vary about ±3 mm from a nominal value. The 
levitation power is very small, but this is for static tests and does not include power consumed by position 
sensing and other overhead functions. 
 
Table 9.1. Static performance of demonstration prototype. 

 Gap 
(design) 

Gap 
(actual) 

Mass 
(design) 

Mass 
(actual) 

Lev 
power 

Light 25 mm 24.6 mm 734 kg 777 kg 2.0 W 
Nominal 20 mm 20.6 mm 958 kg 981 kg 2.0 W 
Heavy 15 mm 15.8 mm 1284 kg 1229 kg 2.3 W 
 
The guideway is 6 m long and allows a vehicle move of 3.9 m. With a nominal load of 981 kg the 
maximum test speed was 1.74 m/s (3.8 mph) with an acceleration of 2 m/s2. 
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Fig. 9.1. Photograph of prototype vehicle and guideway. 
 

This prototype test track will be extended and modified to allow more complete testing of the 
suspension, guidance and propulsion subsystems for a full-scale small vehicle. 

Future plans call for developing an outdoor test track that will allow full speed testing of a passenger-
carrying vehicle and, ultimately, a commercial installation. 
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